Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.889
Filtrar
1.
Elife ; 122024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567944

RESUMO

Aging and senescence are characterized by pervasive transcriptional dysfunction, including increased expression of transposons and introns. Our aim was to elucidate mechanisms behind this increased expression. Most transposons are found within genes and introns, with a large minority being close to genes. This raises the possibility that transcriptional readthrough and intron retention are responsible for age-related changes in transposon expression rather than expression of autonomous transposons. To test this, we compiled public RNA-seq datasets from aged human fibroblasts, replicative and drug-induced senescence in human cells, and RNA-seq from aging mice and senescent mouse cells. Indeed, our reanalysis revealed a correlation between transposons expression, intron retention, and transcriptional readthrough across samples and within samples. Both intron retention and readthrough increased with aging or cellular senescence and these transcriptional defects were more pronounced in human samples as compared to those of mice. In support of a causal connection between readthrough and transposon expression, analysis of models showing induced transcriptional readthrough confirmed that they also show elevated transposon expression. Taken together, our data suggest that elevated transposon reads during aging seen in various RNA-seq dataset are concomitant with multiple transcriptional defects. Intron retention and transcriptional readthrough are the most likely explanation for the expression of transposable elements that lack a functional promoter.


Assuntos
Envelhecimento , Elementos de DNA Transponíveis , Animais , Camundongos , Humanos , Idoso , Íntrons , RNA-Seq , Envelhecimento/genética , Regiões Promotoras Genéticas , Elementos de DNA Transponíveis/genética
2.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38577785

RESUMO

Transposable elements (TEs) are major components of eukaryotic genomes and are implicated in a range of evolutionary processes. Yet, TE annotation and characterization remain challenging, particularly for nonspecialists, since existing pipelines are typically complicated to install, run, and extract data from. Current methods of automated TE annotation are also subject to issues that reduce overall quality, particularly (i) fragmented and overlapping TE annotations, leading to erroneous estimates of TE count and coverage, and (ii) repeat models represented by short sections of total TE length, with poor capture of 5' and 3' ends. To address these issues, we present Earl Grey, a fully automated TE annotation pipeline designed for user-friendly curation and annotation of TEs in eukaryotic genome assemblies. Using nine simulated genomes and an annotation of Drosophila melanogaster, we show that Earl Grey outperforms current widely used TE annotation methodologies in ameliorating the issues mentioned above while scoring highly in benchmarking for TE annotation and classification and being robust across genomic contexts. Earl Grey provides a comprehensive and fully automated TE annotation toolkit that provides researchers with paper-ready summary figures and outputs in standard formats compatible with other bioinformatics tools. Earl Grey has a modular format, with great scope for the inclusion of additional modules focused on further quality control and tailored analyses in future releases.


Assuntos
Elementos de DNA Transponíveis , Drosophila melanogaster , Animais , Elementos de DNA Transponíveis/genética , Anotação de Sequência Molecular , Drosophila melanogaster/genética , Genômica/métodos , Biologia Computacional
3.
Indian J Tuberc ; 71(2): 117-122, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38589114

RESUMO

Tuberculosis (TB) is one of the contagious diseases caused by M. tuberculosis (MTB) bacteria. Prompt diagnosis is one of the active solutions to control the spread of this infection. Besides, a targeted, specific and non-complex diagnosis can prove promising in this type of epidemic. This study was designed to compare the efficiencies of a diagnosis by Ziehl-Neelsen staining (ZN) and by the polymerase chain reaction (PCR) technique. Samples presented smear-positive pulmonary TB were subjected to Chromosomal restriction fragment length polymorphism of IS6110 (IS6110-RFLP) for fingerprinting profile determination. The results showed that out of 100 sputum samples of suspected case, 53 were positive. Numbers of positive individuals for tuberculosis obtained by the different diagnostic techniques, to know, (ZN staining; culture and PCR) were respectively: 6, 25 and 22. Chromosomal RFLP fingerprinting profile revealed the presence of five different genotypes obtained from seven tested isolates. These results suggest that molecular techniques are alternative tool for fast and specific diagnosis of pulmonary MTB from sputum.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Humanos , Elementos de DNA Transponíveis , Polimorfismo de Fragmento de Restrição , Marrocos , Tuberculose Pulmonar/epidemiologia , Tuberculose/diagnóstico , Mycobacterium tuberculosis/genética , Reação em Cadeia da Polimerase/métodos
4.
Wiley Interdiscip Rev RNA ; 15(2): e1848, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605483

RESUMO

Transposable elements and other repeats are repressed by small-RNA-guided histone modifications in fungi, plants and animals. The specificity of silencing is achieved through base-pairing of small RNAs corresponding to the these genomic loci to nascent noncoding RNAs, which allows the recruitment of histone methyltransferases that methylate histone H3 on lysine 9. Self-reinforcing feedback loops enhance small RNA production and ensure robust and heritable repression. In the unicellular ciliate Paramecium tetraurelia, small-RNA-guided histone modifications lead to the elimination of transposable elements and their remnants, a definitive form of repression. In this organism, germline and somatic functions are separated within two types of nuclei with different genomes. At each sexual cycle, development of the somatic genome is accompanied by the reproducible removal of approximately a third of the germline genome. Instead of recruiting a H3K9 methyltransferase, small RNAs corresponding to eliminated sequences tether Polycomb Repressive Complex 2, which in ciliates has the unique property of catalyzing both lysine 9 and lysine 27 trimethylation of histone H3. These histone modifications that are crucial for the elimination of transposable elements are thought to guide the endonuclease complex, which triggers double-strand breaks at these specific genomic loci. The comparison between ciliates and other eukaryotes underscores the importance of investigating small-RNAs-directed chromatin silencing in a diverse range of organisms. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.


Assuntos
Histonas , RNA , Animais , Histonas/genética , Histonas/metabolismo , Código das Histonas , Elementos de DNA Transponíveis , Lisina/genética
5.
Genome Biol Evol ; 16(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566597

RESUMO

Transposable elements (TE) play critical roles in shaping genome evolution. Highly repetitive TE sequences are also a major source of assembly gaps making it difficult to fully understand the impact of these elements on host genomes. The increased capacity of long-read sequencing technologies to span highly repetitive regions promises to provide new insights into patterns of TE activity across diverse taxa. Here we report the generation of highly contiguous reference genomes using PacBio long-read and Omni-C technologies for three species of Passerellidae sparrow. We compared these assemblies to three chromosome-level sparrow assemblies and nine other sparrow assemblies generated using a variety of short- and long-read technologies. All long-read based assemblies were longer (range: 1.12 to 1.41 Gb) than short-read assemblies (0.91 to 1.08 Gb) and assembly length was strongly correlated with the amount of repeat content. Repeat content for Bell's sparrow (31.2% of genome) was the highest level ever reported within the order Passeriformes, which comprises over half of avian diversity. The highest levels of repeat content (79.2% to 93.7%) were found on the W chromosome relative to other regions of the genome. Finally, we show that proliferation of different TE classes varied even among species with similar levels of repeat content. These patterns support a dynamic model of TE expansion and contraction even in a clade where TEs were once thought to be fairly depauperate and static. Our work highlights how the resolution of difficult-to-assemble regions of the genome with new sequencing technologies promises to transform our understanding of avian genome evolution.


Assuntos
Elementos de DNA Transponíveis , Pardais , Animais , Elementos de DNA Transponíveis/genética , Pardais/genética , Análise de Sequência de DNA
6.
Elife ; 122024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635416

RESUMO

Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/ß. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.


Assuntos
60533 , Elementos de DNA Transponíveis , Camundongos , Humanos , Animais , Timo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Timócitos/metabolismo , Células Epiteliais/metabolismo , Diferenciação Celular/genética , Camundongos Endogâmicos C57BL
7.
BMC Genomics ; 25(1): 324, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561675

RESUMO

Lactococcus lactis is widely applied by the dairy industry for the fermentation of milk into products such as cheese. Adaptation of L. lactis to the dairy environment often depends on functions encoded by mobile genetic elements (MGEs) such as plasmids. Other L. lactis MGEs that contribute to industrially relevant traits like antimicrobial production and carbohydrate utilization capacities belong to the integrative conjugative elements (ICE). Here we investigate the prevalence of ICEs in L. lactis using an automated search engine that detects colocalized, ICE-associated core-functions (involved in conjugation or mobilization) in lactococcal genomes. This approach enabled the detection of 36 candidate-ICEs in 69 L. lactis genomes. By phylogenetic analysis of conserved protein functions encoded in all lactococcal ICEs, these 36 ICEs could be classified in three main ICE-families that encompass 7 distinguishable ICE-integrases and are characterized by apparent modular-exchangeability and plasticity. Finally, we demonstrate that phylogenetic analysis of the conjugation-associated VirB4 ATPase function differentiates ICE- and plasmid-derived conjugation systems, indicating that conjugal transfer of lactococcal ICEs and plasmids involves genetically distinct machineries. Our genomic analysis and sequence-based classification of lactococcal ICEs creates a comprehensive overview of the conserved functional repertoires encoded by this family of MGEs in L. lactis, which can facilitate the future exploitation of the functional traits they encode by ICE mobilization to appropriate starter culture strains.


Assuntos
Lactococcus lactis , Lactococcus lactis/genética , Filogenia , Plasmídeos/genética , Proteínas/metabolismo , Genoma , Conjugação Genética , Elementos de DNA Transponíveis
8.
Microb Genom ; 10(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568199

RESUMO

Genetic variability in phytopathogens is one of the main problems encountered for effective plant disease control. This fact may be related to the presence of transposable elements (TEs), but little is known about their role in host genomes. Here, we performed the most comprehensive analysis of insertion sequences (ISs) and transposons (Tns) in the genomes of the most important bacterial plant pathogens. A total of 35 692 ISs and 71 transposons were identified in 270 complete genomes. The level of pathogen-host specialization was found to be a significant determinant of the element distribution among the species. Some Tns were identified as carrying virulence factors, such as genes encoding effector proteins of the type III secretion system and resistance genes for the antimicrobial streptomycin. Evidence for IS-mediated ectopic recombination was identified in Xanthomonas genomes. Moreover, we found that IS elements tend to be inserted in regions near virulence and fitness genes, such ISs disrupting avirulence genes in X. oryzae genomes. In addition, transcriptome analysis under different stress conditions revealed differences in the expression of genes encoding transposases in the Ralstonia solanacearum, X. oryzae, and P. syringae species. Lastly, we also investigated the role of Tns in regulation via small noncoding regulatory RNAs and found these elements may target plant-cell transcriptional activators. Taken together, the results indicate that TEs may have a fundamental role in variability and virulence in plant pathogenic bacteria.


Assuntos
Elementos de DNA Transponíveis , Pequeno RNA não Traduzido , Elementos de DNA Transponíveis/genética , Bactérias , Perfilação da Expressão Gênica , Especificidade de Hospedeiro , Doenças das Plantas
9.
BMC Genomics ; 25(1): 356, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600443

RESUMO

BACKGROUND: Centromeres play a crucial and conserved role in cell division, although their composition and evolutionary history in green algae, the evolutionary ancestors of land plants, remains largely unknown. RESULTS: We constructed near telomere-to-telomere (T2T) assemblies for two Trebouxiophyceae species, Chlorella sorokiniana NS4-2 and Chlorella pyrenoidosa DBH, with chromosome numbers of 12 and 13, and genome sizes of 58.11 Mb and 53.41 Mb, respectively. We identified and validated their centromere sequences using CENH3 ChIP-seq and found that, similar to humans and higher plants, the centromeric CENH3 signals of green algae display a pattern of hypomethylation. Interestingly, the centromeres of both species largely comprised transposable elements, although they differed significantly in their composition. Species within the Chlorella genus display a more diverse centromere composition, with major constituents including members of the LTR/Copia, LINE/L1, and LINE/RTEX families. This is in contrast to green algae including Chlamydomonas reinhardtii, Coccomyxa subellipsoidea, and Chromochloris zofingiensis, in which centromere composition instead has a pronounced single-element composition. Moreover, we observed significant differences in the composition and structure of centromeres among chromosomes with strong collinearity within the Chlorella genus, suggesting that centromeric sequence evolves more rapidly than sequence in non-centromeric regions. CONCLUSIONS: This study not only provides high-quality genome data for comparative genomics of green algae but gives insight into the composition and evolutionary history of centromeres in early plants, laying an important foundation for further research on their evolution.


Assuntos
Chlorella , Humanos , Chlorella/genética , Centrômero/genética , Plantas/genética , Elementos de DNA Transponíveis , Telômero/genética
10.
Elife ; 122024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606833

RESUMO

Understanding how plants adapt to changing environments and the potential contribution of transposable elements (TEs) to this process is a key question in evolutionary genomics. While TEs have recently been put forward as active players in the context of adaptation, few studies have thoroughly investigated their precise role in plant evolution. Here, we used the wild Mediterranean grass Brachypodium distachyon as a model species to identify and quantify the forces acting on TEs during the adaptation of this species to various conditions, across its entire geographic range. Using sequencing data from more than 320 natural B. distachyon accessions and a suite of population genomics approaches, we reveal that putatively adaptive TE polymorphisms are rare in wild B. distachyon populations. After accounting for changes in past TE activity, we show that only a small proportion of TE polymorphisms evolved neutrally (<10%), while the vast majority of them are under moderate purifying selection regardless of their distance to genes. TE polymorphisms should not be ignored when conducting evolutionary studies, as they can be linked to adaptation. However, our study clearly shows that while they have a large potential to cause phenotypic variation in B. distachyon, they are not favored during evolution and adaptation over other types of mutations (such as point mutations) in this species.


Assuntos
Brachypodium , Elementos de DNA Transponíveis , Elementos de DNA Transponíveis/genética , Brachypodium/genética , Polimorfismo Genético , Genômica , Evolução Molecular
11.
Proc Biol Sci ; 291(2020): 20232775, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593848

RESUMO

Transposable elements (TEs) are selfish genetic elements whose antagonistic interactions with hosts represent a common genetic conflict in eukaryotes. To resolve this conflict, hosts have widely adopted epigenetic silencing that deposits repressive marks at TEs. However, this mechanism is imperfect and fails to fully halt TE replication. Furthermore, TE epigenetic silencing can inadvertently spread repressive marks to adjacent functional sequences, a phenomenon considered a 'curse' of this conflict resolution. Here, we used forward simulations to explore how TE epigenetic silencing and its harmful side effects shape the evolutionary dynamics of TEs and their hosts. Our findings reveal that epigenetic silencing allows TEs and their hosts to stably coexist under a wide range of conditions, because the underlying molecular mechanisms give rise to copy-number dependency of the strength of TE silencing. Interestingly, contrary to intuitive expectations that TE epigenetic silencing should evolve to be as strong as possible, we found a selective benefit for modifier alleles that weaken TE silencing under biologically feasible conditions. These results reveal that the dual nature of TE epigenetic silencing, with both positive and negative effects, complicates its evolutionary trajectory and makes it challenging to determine whether TE epigenetic silencing is a 'blessing' or a 'curse'.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Epigênese Genética , Evolução Biológica , Eucariotos/genética
12.
PLoS Genet ; 20(4): e1011231, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578806

RESUMO

Integrons are adaptive devices that capture, stockpile, shuffle and express gene cassettes thereby sampling combinatorial phenotypic diversity. Some integrons called sedentary chromosomal integrons (SCIs) can be massive structures containing hundreds of cassettes. Since most of these cassettes are non-expressed, it is not clear how they remain stable over long evolutionary timescales. Recently, it was found that the experimental inversion of the SCI of Vibrio cholerae led to a dramatic increase of the cassette excision rate associated with a fitness defect. Here, we question the evolutionary sustainability of this apparently counter selected genetic context. Through experimental evolution, we find that the integrase is rapidly inactivated and that the inverted SCI can recover its original orientation by homologous recombination between two insertion sequences (ISs) present in the array. These two outcomes of SCI inversion restore the normal growth and prevent the loss of cassettes, enabling SCIs to retain their roles as reservoirs of functions. These results illustrate a nice interplay between gene orientation, genome rearrangement, bacterial fitness and demonstrate how integrons can benefit from their embedded ISs.


Assuntos
Bactérias , Integrons , Integrons/genética , Bactérias/genética , Elementos de DNA Transponíveis , Integrases/genética
13.
Wiley Interdiscip Rev RNA ; 15(2): e1849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629193

RESUMO

Small non-coding RNAs are key regulators of gene expression across eukaryotes. Piwi-interacting small RNAs (piRNAs) are a specific type of small non-coding RNAs, conserved across animals, which are best known as regulators of genome stability through their ability to target transposable elements for silencing. Despite the near ubiquitous presence of piRNAs in animal lineages, there are some examples where the piRNA pathway has been lost completely, most dramatically in nematodes where loss has occurred in at least four independent lineages. In this perspective I will provide an evaluation of the presence of piRNAs across animals, explaining how it is known that piRNAs are missing from certain organisms. I will then consider possible explanations for why the piRNA pathway might have been lost and evaluate the evidence in favor of each possible mechanism. While it is still impossible to provide definitive answers, these theories will prompt further investigations into why such a highly conserved pathway can nevertheless become dispensable in certain lineages. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.


Assuntos
Drosophila , RNA de Interação com Piwi , Animais , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Interferência de RNA , Drosophila/genética , Eucariotos/metabolismo , Elementos de DNA Transponíveis/genética
14.
World J Microbiol Biotechnol ; 40(6): 177, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656467

RESUMO

During the COVID-19 pandemic, the occurrence of carbapenem-resistant Klebsiella pneumoniae increased in human clinical settings worldwide. Impacted by this increase, international high-risk clones harboring carbapenemase-encoding genes have been circulating in different sources, including the environment. The blaKPC gene is the most commonly disseminated carbapenemase-encoding gene worldwide, whose transmission is carried out by different mobile genetic elements. In this study, blaKPC-2-positive Klebsiella pneumoniae complex strains were isolated from different anthropogenically affected aquatic ecosystems and characterized using phenotypic, molecular, and genomic methods. K. pneumoniae complex strains exhibited multidrug-resistant and extensively drug-resistant profiles, spotlighting the resistance to carbapenems, ceftazidime-avibactam, colistin, and tigecycline, which are recognized as last-line antimicrobial treatment options. Molecular analysis showed the presence of several antimicrobial resistance, virulence, and metal tolerance genes. In-depth analysis showed that the blaKPC-2 gene was associated with three different Tn4401 isoforms (i.e., Tn4401a, Tn4401b, and Tn4401i) and NTEKPC elements. Different plasmid replicons were detected and a conjugative IncN-pST15 plasmid harboring the blaKPC-2 gene associated with Tn4401i was highlighted. K. pneumoniae complex strains belonging to international high-risk (e.g., ST11 and ST340) and unusual clones (e.g., ST323, ST526, and ST4216) previously linked to clinical settings. In this context, some clones were reported for the first time in the environmental sector. Therefore, these findings evidence the occurrence of carbapenemase-producing K. pneumoniae complex strains in aquatic ecosystems and contribute to the monitoring of carbapenem resistance worldwide.


Assuntos
Antibacterianos , Variação Genética , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Plasmídeos , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Plasmídeos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Infecções por Klebsiella/microbiologia , Ecossistema , Carbapenêmicos/farmacologia , Microbiologia da Água , Elementos de DNA Transponíveis
15.
Nat Commun ; 15(1): 3464, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658536

RESUMO

TnpBs encoded by the IS200/IS605 family transposon are among the most abundant prokaryotic proteins from which type V CRISPR-Cas nucleases may have evolved. Since bacterial TnpBs can be programmed for RNA-guided dsDNA cleavage in the presence of a transposon-adjacent motif (TAM), these nucleases hold immense promise for genome editing. However, the activity and targeting specificity of TnpB in homology-directed gene editing remain unknown. Here we report that a thermophilic archaeal TnpB enables efficient gene editing in the natural host. Interestingly, the TnpB has different TAM requirements for eliciting cell death and for facilitating gene editing. By systematically characterizing TAM variants, we reveal that the TnpB recognizes a broad range of TAM sequences for gene editing including those that do not elicit apparent cell death. Importantly, TnpB shows a very high targeting specificity on targets flanked by a weak TAM. Taking advantage of this feature, we successfully leverage TnpB for efficient single-nucleotide editing with templated repair. The use of different weak TAM sequences not only facilitates more flexible gene editing with increased cell survival, but also greatly expands targeting scopes, and this strategy is probably applicable to diverse CRISPR-Cas systems.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Elementos de DNA Transponíveis/genética , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Transposases/metabolismo , Transposases/genética
16.
Nat Commun ; 15(1): 3451, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658544

RESUMO

Enhancers are fast-evolving genomic sequences that control spatiotemporal gene expression patterns. By examining enhancer turnover across mammalian species and in multiple tissue types, we uncover a relationship between the emergence of enhancers and genome organization as a function of germline DNA replication time. While enhancers are most abundant in euchromatic regions, enhancers emerge almost twice as often in late compared to early germline replicating regions, independent of transposable elements. Using a deep learning sequence model, we demonstrate that new enhancers are enriched for mutations that alter transcription factor (TF) binding. Recently evolved enhancers appear to be mostly neutrally evolving and enriched in eQTLs. They also show more tissue specificity than conserved enhancers, and the TFs that bind to these elements, as inferred by binding sequences, also show increased tissue-specific gene expression. We find a similar relationship with DNA replication time in cancer, suggesting that these observations may be time-invariant principles of genome evolution. Our work underscores that genome organization has a profound impact in shaping mammalian gene regulation.


Assuntos
Replicação do DNA , Elementos Facilitadores Genéticos , Animais , Humanos , Evolução Molecular , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Camundongos , Regulação da Expressão Gênica , Especificidade de Órgãos/genética , Mutação , Genoma/genética , Elementos de DNA Transponíveis/genética
17.
Front Immunol ; 15: 1294020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646531

RESUMO

Endogenous retroviruses (ERVs) derived from the long terminal repeat (LTR) family of transposons constitute a significant portion of the mammalian genome, with origins tracing back to ancient viral infections. Despite comprising approximately 8% of the human genome, the specific role of ERVs in the pathogenesis of COVID-19 remains unclear. In this study, we conducted a genome-wide identification of ERVs in human peripheral blood mononuclear cells (hPBMCs) and primary lung epithelial cells from monkeys and mice, both infected and uninfected with SARS-CoV-2. We identified 405, 283, and 206 significantly up-regulated transposable elements (TEs) in hPBMCs, monkeys, and mice, respectively. This included 254, 119, 68, and 28 ERVs found in hPBMCs from severe and mild COVID-19 patients, monkeys, and transgenic mice expressing the human ACE2 receptor (hACE2) and infected with SARS-CoV-2. Furthermore, analysis using the Genomic Regions Enrichment of Annotations Tool (GREAT) revealed certain parental genomic sequences of these up-regulated ERVs in COVID-19 patients may be involved in various biological processes, including histone modification and viral replication. Of particular interest, we identified 210 ERVs specifically up-regulated in the severe COVID-19 group. The genes associated with these differentially expressed ERVs were enriched in processes such as immune response activation and histone modification. HERV1_I-int: ERV1:LTR and LTR7Y: ERV1:LTR were highlighted as potential biomarkers for evaluating the severity of COVID-19. Additionally, validation of our findings using RT-qPCR in Bone Marrow-Derived Macrophages (BMDMs) from mice infected by HSV-1 and VSV provided further support to our results. This study offers insights into the expression patterns and potential roles of ERVs following viral infection, providing a valuable resource for future studies on ERVs and their interaction with SARS-CoV-2.


Assuntos
COVID-19 , Retrovirus Endógenos , SARS-CoV-2 , Retrovirus Endógenos/genética , Animais , Humanos , COVID-19/imunologia , COVID-19/virologia , COVID-19/genética , SARS-CoV-2/fisiologia , SARS-CoV-2/imunologia , Camundongos , Leucócitos Mononucleares/virologia , Leucócitos Mononucleares/imunologia , Camundongos Transgênicos , Elementos de DNA Transponíveis/genética , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Pulmão/virologia , Pulmão/imunologia
18.
Proc Natl Acad Sci U S A ; 121(15): e2313866121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564639

RESUMO

Transposable element invasions have a profound impact on the evolution of genomes and phenotypes. It is thus an important open question how often such TE invasions occur. To address this question, we utilize the genomes of historical specimens, sampled about 200 y ago. We found that the LTR retrotransposons Blood, Opus, and 412 spread in Drosophila melanogaster in the 19th century. These invasions constitute second waves, as degraded fragments were found for all three TEs. The composition of Opus and 412, but not of Blood, shows a pronounced geographic heterogeneity, likely due to founder effects during the invasions. Finally, we identified species from the Drosophila simulans complex as the likely origin of the TEs. We show that in total, seven TE families invaded D. melanogaster during the last 200y, thereby increasing the genome size by up to 1.2Mbp. We suggest that this high rate of TE invasions was likely triggered by human activity. Based on the analysis of strains and specimens sampled at different times, we provide a detailed timeline of TE invasions, making D. melanogaster the first organism where the invasion history of TEs during the last two centuries could be inferred.


Assuntos
Drosophila melanogaster , Retroelementos , Animais , Humanos , Drosophila melanogaster/genética , Retroelementos/genética , Genoma , Elementos de DNA Transponíveis , Evolução Molecular
19.
BMC Biol ; 22(1): 92, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654264

RESUMO

BACKGROUND: Transposable elements (TEs) have a profound influence on the trajectory of plant evolution, driving genome expansion and catalyzing phenotypic diversification. The pangenome, a comprehensive genetic pool encompassing all variations within a species, serves as an invaluable tool, unaffected by the confounding factors of intraspecific diversity. This allows for a more nuanced exploration of plant TE evolution. RESULTS: Here, we constructed a pangenome for diploid A-genome cotton using 344 accessions from representative geographical regions, including 223 from China as the main component. We found 511 Mb of non-reference sequences (NRSs) and revealed the presence of 5479 previously undiscovered protein-coding genes. Our comprehensive approach enabled us to decipher the genetic underpinnings of the distinct geographic distributions of cotton. Notably, we identified 3301 presence-absence variations (PAVs) that are closely tied to gene expression patterns within the pangenome, among which 2342 novel expression quantitative trait loci (eQTLs) were found residing in NRSs. Our investigation also unveiled contrasting patterns of transposon proliferation between diploid and tetraploid cotton, with long terminal repeat (LTR) retrotransposons exhibiting a synchronized surge in polyploids. Furthermore, the invasion of LTR retrotransposons from the A subgenome to the D subgenome triggered a substantial expansion of the latter following polyploidization. In addition, we found that TE insertions were responsible for the loss of 36.2% of species-specific genes, as well as the generation of entirely new species-specific genes. CONCLUSIONS: Our pangenome analyses provide new insights into cotton genomics and subgenome dynamics after polyploidization and demonstrate the power of pangenome approaches for elucidating transposon impacts and genome evolution.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Genoma de Planta , Gossypium , Gossypium/genética , Elementos de DNA Transponíveis/genética , Locos de Características Quantitativas
20.
PLoS Genet ; 20(3): e1011201, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38530818

RESUMO

During the last few centuries D. melanogaster populations were invaded by several transposable elements, the most recent of which was thought to be the P-element between 1950 and 1980. Here we describe a novel TE, which we named Spoink, that has invaded D. melanogaster. It is a 5216nt LTR retrotransposon of the Ty3/gypsy superfamily. Relying on strains sampled at different times during the last century we show that Spoink invaded worldwide D. melanogaster populations after the P-element between 1983 and 1993. This invasion was likely triggered by a horizontal transfer from the D. willistoni group, much as the P-element. Spoink is probably silenced by the piRNA pathway in natural populations and about 1/3 of the examined strains have an insertion into a canonical piRNA cluster such as 42AB. Given the degree of genetic investigation of D. melanogaster it is perhaps surprising that Spoink was able to invade unnoticed.


Assuntos
Drosophila melanogaster , Retroelementos , Animais , Drosophila melanogaster/genética , RNA de Interação com Piwi , Drosophila/genética , Elementos de DNA Transponíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...